Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Med Biol Eng Comput ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653881

The aim of this study was to evaluate the bone tissue effects under dynamic loading using finite element analysis (FEA) for four angled abutments with different deviated palatal lateral tilt angles. A three-dimensional model of the posterior maxillary region and an implant crown model were reconstructed and assembled with a three-dimensional model of the implant, angled abutment, and central screw to create a total of 10 three-dimensional finite element models tilted at 15 ∘ , 20 ∘ , 25 ∘ , and 30 ∘ in three groups, and the dynamic loads simulating oral mastication were loaded on the implant crown to analyze the equivalent stresses and strains in the peri-implant bone tissues. Under the dynamic loading, the cortical bone on the buccal side of the implant neck showed different degrees of stress concentration, and the cortical bone stress was much higher than the cancellous bone, and the strain concentration area of each model was located in the bone tissue around the implant neck and base. For the use of angular abutment, under the premise that the cortical bone stresses and strains of the 10 models meet the requirements for use, the peak stresses of 2.907 MPa, 3.018 MPa, and 2.164 MPa were achieved by using the 20 ∘ angular abutment to achieve the tilt angles of 20 ∘ , 25 ∘ , and 30 ∘ implantation, which is more advantageous compared with other models.

2.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Article En | MEDLINE | ID: mdl-38587042

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neovascularization, Pathologic , Sphingolipids , Tumor-Associated Macrophages , Humans , Sphingolipids/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor-Associated Macrophages/metabolism , Signal Transduction , Single-Cell Analysis , Mice , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Sequence Analysis, RNA , Tumor Microenvironment , Angiogenesis
3.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664387

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
4.
J Neurol Sci ; 459: 122949, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38493734

OBJECTIVE: Wilson's disease (WD) is a metabolic disorder associated with abnormal copper metabolism that results in hepatic, psychiatric, and neurologic symptoms. No investigation of taste function has been made in patients with WD, although olfactory dysfunction has been evaluated. METHODS: Quantitative taste and smell test scores of 29 WD patients were compared to those of 790 healthy controls. Taste was measured using the 53-item Waterless Empirical Taste Test (WETT®) and smell using the 40-item revised University of Pennsylvania Smell Identification Test (R-UPSIT®). Multiple linear regression analysis controlled for age and sex. RESULTS: Average WETT® scores did not differ meaningfully between WD and control subjects (respective medians & IQRs = 32 [28-42] & 34 [27-41]); linear regression coefficient = 1.19, 95% CI [-0.81, 3.19], p = 0.242). In contrast, WD was associated with significantly reduced olfactory function [respective median (IQR) R-UPSIT® scores = 35 (33-37) vs. 37 (35-38); adjusted linear regression coefficient = -1.59, 95% CI [-2.34, -0.833]; p < 0.001)]. Neither olfaction nor taste were influenced by WD symptom subtype [23 (79.3%) were hepatic-predominant; 6 (20.7%) neurologic predominant]; R-UPSIT®, p = 0.774; WETT®, p = 0.912). No effects of primary medication or years since diagnosis (R-UPSIT®, p = 0.147; WETT®, p = 0.935) were found. Weak correlations were present between R-UPSIT® and WETT® scores for both control (r=0.187, p < 0.0001) and WD (r=0.237) subjects, although the latter correlation did not reach the 0.05 α level (p = 0.084). CONCLUSION: Although WD negatively impacts smell function, taste is spared. Research is needed to understand the pathophysiologic mechanisms responsible for this divergence.


Hepatolenticular Degeneration , Olfaction Disorders , Humans , Smell/physiology , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnosis , Taste , Copper , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology
5.
Int J Prosthodont ; 37(1): 49-58, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38381984

PURPOSE: To compare the biomechanical responses of a normal mandible to an osteoporotic mandible with two-implant-supported magnetic attachments. MATERIALS AND METHODS: A 3D finite-element model of a two-implant-supported mandibular overdenture with magnetic attachments was developed, and normal and osteoporotic bone samples were prepared. Four types of load were applied to the overdenture in each model: 100 N vertical and oblique loads on the right first molar, and a 100 N vertical load on the right canine and incisors. Biomechanical behaviors of the peri-implant bone, implant, and mucosa were recorded. Maximum equivalent stresses and elastic strains were analyzed. RESULTS: Equivalent elastic strain in osteoporotic cortical and cancellous bone was 9% to 71% and was 142% and 207% greater than in normal cortical bone, respectively. Equivalent elastic strain in the first molar oblique loading condition was 101% to 190% greater than in the first molar vertical loading condition. CONCLUSIONS: Osteoporotic cancellous bone was weaker and less resistant to deformation than normal bone, and oblique loading was more harmful than vertical loading.


Dental Implants , Denture, Overlay , Finite Element Analysis , Dental Stress Analysis , Dental Prosthesis, Implant-Supported , Mandible , Magnetic Phenomena , Stress, Mechanical
6.
Comput Methods Biomech Biomed Engin ; 27(6): 717-726, 2024 May.
Article En | MEDLINE | ID: mdl-37053006

At present, selective laser melting (SLM) 3D printing technology can accurately control the internal pore structure and complex cell shape. Three types of reticulated meshes with cubic, G7 and composite structure cell shapes were fabricated by the SLM 3D printing technology using Ti-6Al-4V alloy powders. The bone stresses around the implant and the stresses in the implant were analyzed by ANSYS finite element software, which comprehensively evaluated the effect of porous dental implants with different spatial porosity characteristics on osseointegration. The results show that porous dental implants with composite structure of pore characteristics have improved mechanical and biological properties and can better promote the growth and integration of bone tissue.


Dental Implants , Porosity , Materials Testing , Alloys , Titanium/chemistry , Bone and Bones , Osseointegration , Surface Properties
7.
Cell Rep ; 42(12): 113487, 2023 12 26.
Article En | MEDLINE | ID: mdl-37995188

During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.


White Matter , Humans , Adolescent , Executive Function , Brain , Cognition
8.
Chin J Cancer Res ; 35(5): 501-510, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37969964

Objective: The heightened prevalence of pulmonary nodules (PN) has escalated its significance as a public health concern. While the precise identification of high-risk PN carriers for malignancy remains an ongoing challenge, genetic variants hold potentials as determinants of disease susceptibility that can aid in diagnosis. Yet, current understanding of the genetic loci associated with malignant PN (MPN) risk is limited. Methods: A frequency-matched case-control study was performed, comprising 247 MPN cases and 412 benign NP (BNP) controls. We genotyped 11 established susceptibility loci for lung cancer in a Chinese cohort. Loci associated with MPN risk were utilized to compute a polygenic risk score (PRS). This PRS was subsequently incorporated into the diagnostic evaluation of MPNs, with emphasis on serum tumor biomarkers. Results: Loci rs10429489G>A, rs17038564A>G, and rs12265047A>G were identified as being associated with an increased risk of MPNs. The PRS, formulated from the cumulative risk effects of these loci, correlated with the malignant risk of PNs in a dose-dependent fashion. A high PRS was found to amplify the MPN risk by 156% in comparison to a low PRS [odds ratio (OR)=2.56, 95% confidence interval (95% CI), 1.40-4.67]. Notably, the PRS was observed to enhance the diagnostic accuracy of serum carcinoembryonic antigen (CEA) in distinguishing MPNs from BPNs, with diagnostic values rising from 0.716 to 0.861 across low- to high-PRS categories. Further bioinformatics investigations pinpointed rs10429489G>A as an expression quantitative trait locus. Conclusions: Loci rs10429489G>A, rs17038564A>G, and rs12265047A>G contribute to MPN risk and augment the diagnostic precision for MPNs based on serum CEA concentrations.

9.
J Stomatol Oral Maxillofac Surg ; 125(3): 101700, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37979781

INTRODUCTION: Accurate segmentation of the key mandibular region in the oral panoramic X-ray image is crucial for the diagnosis of the mandibular region and the planning of implant surgery. Because the oral panoramic X-ray image contains many important anatomical information for implant treatment evaluation. However, the fuzzy boundary between each region in the image makes the segmentation task very challenging. In data-driven segmentation methods, corresponding datasets are often required. Due to the limited oral data set at present, there is a bottleneck in clinical application. MATERIALS AND METHODS: In this paper, we build a panoramic X-ray image dataset for the mandibular region. The dataset has a total of 711 images. The dataset is divided into 8 categories based on the number of teeth and treatment conditions. The annotations include mandible, normal teeth, treated teeth and implants. In terms of network segmentation. According to the local and global characteristics of the dataset, we designed a CBTrans partition network by paralleling the convolution block and the Swin-transform block of the bottleneck structure. RESULTS: The experimental results show that our proposed network achieves excellent performance on the mandibular region segmentation dataset and the common retina dataset DRIVE. CONCLUSION: CBTrans can better extract features locally and globally by combining CNN of the bottleneck structure and Swin Transformer in parallel. CBTrans demonstrates performance advantages over other similar hybrid architecture models.

10.
Heliyon ; 9(5): e15757, 2023 May.
Article En | MEDLINE | ID: mdl-37159680

Cholesterol gallstone disease (CGD) is associated with bile cholesterol supersaturation. The Niemann-Pick C1-like 1 (NPC1L1), the inhibitory target of ezetimibe (EZE), is a critical sterol transporter of cholesterol absorption. Intestinal NPC1L1 facilitates the absorption of cholesterol, whereas hepatic NPC1L1 promotes cholesterol uptake by hepatocytes and reduces bile cholesterol supersaturation. The potential of hepatic NPC1L1 to prevent CGD has yet to be established due to its absence in the mice model. In this study, we generated mice expressing hepatic NPC1L1 using adeno-associated virus (AAV) gene delivery. The biliary cholesterol saturations and gallstone formations were explored under chow diet and lithogenic diet (LD) with or without EZE treatment. The long-term (8-week) LD-fed AAV-mNPC1L1 mice exhibited no significant differences in biliary cholesterol saturation and gallstone formation compared to WT mice. EZE effectively prevented CGD in both WT and AAV-mNPC1L1 mice. Mechanistically, prolonged LD feeding induced the degradation of hepatic NPC1L1, whereas short-term (2-week) LD feeding preserved the expression of hepatic NPC1L1. In conclusion, our findings suggest that hepatic NPC1L1 is unable to prevent CGD, whereas EZE functions as an efficient bile cholesterol desaturator during CGD development.

11.
bioRxiv ; 2023 Apr 24.
Article En | MEDLINE | ID: mdl-37163042

Neuroimaging data from multiple batches (i.e. acquisition sites, scanner manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the human brain. However, multi-batch data, as well as extracted radiomic features, exhibit pronounced technical artifacts across batches. These batch effects introduce confounding into the data and can obscure biological effects of interest, decreasing the generalizability and reproducibility of findings. This is especially true when multi-batch data is used alongside complex downstream analysis models, such as machine learning methods. Image harmonization methods seeking to remove these batch effects are important for mitigating these issues; however, significant multivariate batch effects remain in the data following harmonization by current state-of-the-art statistical and deep learning methods. We present DeepCombat, a deep learning harmonization method based on a conditional variational autoencoder architecture and the ComBat harmonization model. DeepCombat learns and removes subject-level batch effects by accounting for the multivariate relationships between features. Additionally, DeepComBat relaxes a number of strong assumptions commonly made by previous deep learning harmonization methods and is empirically robust across a wide range of hyperparameter choices. We apply this method to neuroimaging data from a large cognitive-aging cohort and find that DeepCombat outperforms existing methods, as assessed by a battery of machine learning methods, in removing scanner effects from cortical thickness measurements while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically-motivated deep learning harmonization methods.

12.
Front Neurosci ; 17: 1038011, 2023.
Article En | MEDLINE | ID: mdl-37065926

Objectives: Perivascular spaces have been involved in neuroinflammatory and neurodegenerative diseases. Upon a certain size, these spaces can become visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of systematic evidence on etiology and temporal dynamics of MVPVS hampers their diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was to summarize potential etiologies and evolution of MVPVS. Methods: In a comprehensive literature search, out of 1,488 unique publications, 140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for a qualitative summary. 6 records were included in a meta-analysis to assess the association between MVPVS and brain atrophy. Results: Four overarching and partly overlapping etiologies of MVPVS have been proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune cell accumulation in the perivascular space. The meta-analysis in patients with neuroinflammatory diseases did not support an association between MVPVS and brain volume measures [R: -0.15 (95%-CI -0.40-0.11)]. Based on few and mostly small studies in tumefactive MVPVS and in vascular and neuroinflammatory diseases, temporal evolution of MVPVS is slow. Conclusion: Collectively, this study provides high-grade evidence for MVPVS etiopathogenesis and temporal dynamics. Although several potential etiologies for MVPVS emergence have been proposed, they are only partially supported by data. Advanced MRI methods should be employed to further dissect etiopathogenesis and evolution of MVPVS. This can benefit their implementation as an imaging biomarker. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=346564, identifier CRD42022346564.

13.
Neuroimage ; 274: 120125, 2023 07 01.
Article En | MEDLINE | ID: mdl-37084926

Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.


Deep Learning , Humans , Reproducibility of Results , Benchmarking , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology
14.
Int J Prosthodont ; 2022 Dec 06.
Article En | MEDLINE | ID: mdl-36484662

PURPOSE: To compare the biomechanical responses of a normal mandible to an osteoporotic mandible with two implant-supported magnetic attachments. MATERIALS AND METHODS: A 3D finite element model of a two-implant-supported mandibular overdenture with magnetic attachments was developed, and normal and osteoporotic bone samples were prepared. Four types of load were applied to the overdenture in each model: 100-N vertical and oblique loads on the right first molar, and 100-N vertical load on the right canine and the incisors. Biomechanical behaviors of the peri-implant bone, implant, and mucosa were recorded. Maximum equivalent stresses and elastic strains were analyzed. RESULTS: Equivalent elastic strain in osteoporotic cortical and cancellous bone was 9% to 71% and, respectively, 142% and 207% greater than in normal cortical bone. Equivalent elastic strain in the first molar oblique loading condition was 101% to 190% greater than in the first molar vertical loading condition. CONCLUSION: Osteoporotic cancellous bone was weaker and less resistant to deformation than normal bone, and oblique loading was more harmful than vertical loading.

15.
Ann Transl Med ; 10(19): 1051, 2022 Oct.
Article En | MEDLINE | ID: mdl-36330414

Background: Immune cells play an essential role in virus-induced liver fibrosis. However, the underlying mechanisms remain unclear. In this study, we systematically explored immune cell infiltration and feature genes to provide new insights into viral hepatitis-associated liver fibrosis. Methods: The expression datasets GSE14323, GSE33650, GSE6764 (for testing), and GSE84044 (for validation) were downloaded from the Gene Expression Omnibus (GEO) database. Immune cell infiltration was assessed using the CIBERSORT algorithm, and characteristic subgroups were obtained using least absolute shrinkage and selection operator (LASSO) regression and Wilcoxon test. The association between feature genes and immune-infiltrating cells was explored using Spearman's correlation analysis. R software and IBM SPSS Statistics were utilized for data analysis and visualization. Results: We identified 10 differential immune cells between viral hepatitis-associated liver fibrosis and non-fibrosis, including naive B cells, plasma cells, resting CD4+ memory T cells, T follicular helper (Tfh) cells, regulatory T (Treg) cells, M0-M2 macrophages, and resting and activated mast cells. Six feature genes were identified: STAT1, CXCL10, PTPRC, IFIT3, OAS2, and MX1. They also differed significantly in the subgroups of non-fibrosis, mild to moderate fibrosis and severe fibrosis. Both the feature genes and immune cells were verified in the validation group. All the genes were positively associated with macrophages M1 and negatively associated with macrophages M2. Conclusions: The six feature genes may be involved in viral hepatitis-associated liver fibrosis by promoting the polarization of macrophages from M0 to M1 and inhibiting their conversion to M2. Thus, these genes may serve as potential therapeutic targets.

16.
Lipids Health Dis ; 21(1): 109, 2022 Oct 27.
Article En | MEDLINE | ID: mdl-36303150

BACKGROUND: Hepatic caveolin-1 (CAV1) is reduced in cholesterol gallstone disease (CGD). Mice with CAV1 deficiency were prone to develop CGD. However, it remains unknown whether restored hepatic CAV1 expression prevents the development of CGD. METHODS: C57BL/6 mice were injected with adeno-associated virus 2/8 (AAV2/8) vectors carrying the CAV1 gene (AAV2/8CAV1) via intravenous (i.v.) or intraperitoneal (i.p.) route and then subjected to a lithogenic diet (LD) for 8 weeks. Uninjected mice were used as controls. The functional consequences of rescuing CAV1 expression by either i.v. or i.p. AAV2/8CAV1 treatment for CGD prevention and its subsequent molecular mechanisms were examined. RESULTS: CAV1 expression was reduced in the liver and gallbladder of LD-fed CGD mice. We discovered that AAV2/8CAV1 i.p. delivery results in higher transduction efficiency in the gallbladder than tail vein administration. Although either i.v. or i.p. injection of AAV2/8CAV1 improved liver lipid metabolic abnormalities in CGD mice but did not affect LD feeding-induced bile cholesterol supersaturation. In comparison with i.v. administration route, i.p. administration of AAV2/8CAV1 obviously increased CAV1 protein levels in the gallbladder of LD-fed mice, and i.p. delivery of AAV2/8CAV1 partially improved gallbladder cholecystokinin receptor (CCKAR) responsiveness and impeded bile cholesterol nucleation via the activation of adenosine monophosphate-activated protein kinase (AMPK) signaling, which induced a reduction in gallbladder mucin-1 (MUC1) and MUC5ac expression and gallbladder cholesterol accumulation. CONCLUSION: CGD prevention by i.p. AAV2/8CAV1 injection in LD-fed mice was associated with the improvement of gallbladder stasis, which again supported the notion that supersaturated bile is required but not sufficient for the formation of cholesterol gallstones. Additionally, AAV treatment via the local i.p. injection offers particular advantages over the systemic i.v. route for much more effective gallbladder gene delivery, which will be an excellent tool for conducting preclinical functional studies on the maintenance of normal gallbladder function to prevent CGD.


Caveolin 1 , Gallstones , Animals , Mice , Caveolin 1/genetics , Caveolin 1/metabolism , Cholesterol/metabolism , Cholesterol, Dietary , Dependovirus/genetics , Dependovirus/metabolism , Gallbladder/metabolism , Gallstones/genetics , Gallstones/prevention & control , Liver/metabolism , Mice, Inbred C57BL
17.
Lipids Health Dis ; 21(1): 97, 2022 Oct 08.
Article En | MEDLINE | ID: mdl-36209166

BACKGROUND: Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS: Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS: The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS: LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.


Membrane Transport Proteins , Receptor, Fibroblast Growth Factor, Type 4 , Animals , Cholesterol/metabolism , Diet, High-Fat , Ezetimibe/pharmacology , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 4/metabolism
18.
Hum Brain Mapp ; 43(15): 4650-4663, 2022 10 15.
Article En | MEDLINE | ID: mdl-35730989

When individual subjects are imaged with multiple modalities, biological information is present not only within each modality, but also between modalities - that is, in how modalities covary at the voxel level. Previous studies have shown that local covariance structures between modalities, or intermodal coupling (IMCo), can be summarized for two modalities, and that two-modality IMCo reveals otherwise undiscovered patterns in neurodevelopment and certain diseases. However, previous IMCo methods are based on the slopes of local weighted linear regression lines, which are inherently asymmetric and limited to the two-modality setting. Here, we present a generalization of IMCo estimation which uses local covariance decompositions to define a symmetric, voxel-wise coupling coefficient that is valid for two or more modalities. We use this method to study coupling between cerebral blood flow, amplitude of low frequency fluctuations, and local connectivity in 803 subjects ages 8 through 22. We demonstrate that coupling is spatially heterogeneous, varies with respect to age and sex in neurodevelopment, and reveals patterns that are not present in individual modalities. As availability of multi-modal data continues to increase, principal-component-based IMCo (pIMCo) offers a powerful approach for summarizing relationships between multiple aspects of brain structure and function. An R package for estimating pIMCo is available at: https://github.com/hufengling/pIMCo.


Brain Mapping , Magnetic Resonance Imaging , Brain/physiology , Brain Mapping/methods , Cerebrovascular Circulation , Child , Humans , Linear Models , Magnetic Resonance Imaging/methods
19.
JAMA Netw Open ; 5(1): e2144742, 2022 01 04.
Article En | MEDLINE | ID: mdl-35072720

Importance: Despite the rapid growth of interest and diversity in applications of artificial intelligence (AI) to biomedical research, there are limited objective ways to characterize the potential for use of AI in clinical practice. Objective: To examine what types of medical AI have the greatest estimated translational impact (ie, ability to lead to development that has measurable value for human health) potential. Design, Setting, and Participants: In this cohort study, research grants related to AI awarded between January 1, 1985, and December 31, 2020, were identified from a National Institutes of Health (NIH) award database. The text content for each award was entered into a Natural Language Processing (NLP) clustering algorithm. An NIH database was also used to extract citation data, including the number of citations and approximate potential to translate (APT) score for published articles associated with the granted awards to create proxies for translatability. Exposures: Unsupervised assignment of AI-related research awards to application topics using NLP. Main Outcomes and Measures: Annualized citations per $1 million funding (ACOF) and average APT score for award-associated articles, grouped by application topic. The APT score is a machine-learning based metric created by the NIH Office of Portfolio Analysis that quantifies the likelihood of future citation by a clinical article. Results: A total of 16 629 NIH awards related to AI were included in the analysis, and 75 applications of AI were identified. Total annual funding for AI grew from $17.4 million in 1985 to $1.43 billion in 2020. By average APT, interpersonal communication technologies (0.488; 95% CI, 0.472-0.504) and population genetics (0.463; 95% CI, 0.453-0.472) had the highest translatability; environmental health (ACOF, 1038) and applications focused on the electronic health record (ACOF, 489) also had high translatability. The category of applications related to biochemical analysis was found to have low translatability by both metrics (average APT, 0.393; 95% CI, 0.388-0.398; ACOF, 246). Conclusions and Relevance: Based on this study's findings, data on grants from the NIH can apparently be used to identify and characterize medical applications of AI to understand changes in academic productivity, funding support, and potential for translational impact. This method may be extended to characterize other research domains.


Artificial Intelligence/economics , Awards and Prizes , Biomedical Research/economics , National Institutes of Health (U.S.)/economics , Cohort Studies , Financing, Government , Financing, Organized , Humans , Research Support as Topic/economics , United States
20.
Scand J Gastroenterol ; 57(3): 371-376, 2022 Mar.
Article En | MEDLINE | ID: mdl-34839764

BACKGROUND: Esophageal gastrointestinal stromal tumors(GISTs) are extremely rare. We sought to determine whether endoscopic treatment can be a viable therapeutic option for esophageal GISTs. METHODS: A total of 20 cases with histological diagnosis of esophageal GISTs were obtained from our center between 2008 and 2020. Data on the clinicopathological features and treatment were recorded. RESULTS: There were 9 males (45%) and 11 females (55%) in this study, with a median age of 56 years. The tumors preferentially occurred in the middle and lower parts of the thoracic esophagus (45 and 40%, respectively). The mean size of the tumors was 2.27 cm and mitotic index was no more than 5/50 high power field (HPF) in all patients. In this study, 11 patients received endoscopic treatment and nine patients underwent surgical resection. Tumors ranged from 0.6 to 4 cm in the endoscopic treatment patients and 0.5 to 7 cm in the surgical patients. There were no significant differences in gender, age, symptoms, tumor location, tumor size, mitotic index, and adjuvant imatinib therapy between the endoscopic treatment group and the surgery group (all p > .05). The Kaplan-Meier curve suggested that there was also no significant difference in disease-free survival between the two groups (p = .264). CONCLUSIONS: Endoscopic treatment may be an option for the treatment of esophageal GISTs smaller than 5 cm with a mitotic index no more than 5/50 HPF.


Esophageal Neoplasms , Gastrointestinal Stromal Tumors , Disease-Free Survival , Esophageal Neoplasms/surgery , Female , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/surgery , Humans , Imatinib Mesylate , Male , Middle Aged , Prognosis , Retrospective Studies
...